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Abstract. Functional topology is concerned with developing topological con-

cepts in a category endowed with certain axiomatically defined classes of mor-
phisms [5]. In this paper, we extend functional topology to a monoidal frame-

work, replacing categorical pullbacks by pullbacks relative to the monoidal
structure (which itself replaces the product) or more generally relative to a rela-

tion on the category [14]. Our main application is to the opposite Woronowicz

category of C∗-algebras. In this category a natural class of proper morphisms
yields the unital algebras as compact objects. When restricted to the com-

mutative C∗-algebras, we recover exactly the morphisms induced by proper

continuous maps of locally compact Hausdorff spaces. We further endow this
category with a factorization system and investigate the precise relation with

the proper maps, building on an approach which we previously developed with

the eye on the category of schemes [16]. We also show how our results for C∗-
algebras can naturally be adapted to the opposite Woronowicz category of

nondegenerate algebras over a commutative ring.

1. Introduction

By the famous Gelfand-Naimark theorem, the category of locally compact Haus-
dorff spaces with proper maps is dual to the category of commutative C∗-algebras
with C∗-morphisms. This theorem forms the basis for the point of view of noncom-
mutative geometry, where noncommutative C∗-algebras are considered as “non-
commutative spaces”. An obvious shortcoming in the above result is the a priori
restriction to proper maps between topological spaces. This problem is remedied
by turning to the Woronowicz category of C∗-algebras Wor(C∗-Alg), of which the
restriction to commutative C∗-algebras is equivalent to the category of locally com-
pact Hausdorff spaces with all continuous maps. The definition of the Woronowicz
category is somewhat involved, and makes essential use of the construction of the
multiplier algebra, which is the largest unitization of a C∗-algebra and constitutes
the noncommutative counterpart of the Čech-Stone compactification. This suggests
that unital C∗-algebras should somehow be considered as compact objects.

The main aim of this paper is to introduce and investigate notions of compact-
ness and properness for C∗-algebras in the context of so-called functional topology
on the category Wor(C∗-Alg)op. In very general terms, functional topology is
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an approach to developing topological concepts in a category based upon certain
(axiomatically defined) classes of maps. This basic idea dates back at least to the
seventies with the work of Herrlich [10], Manes [18], Penon [21] [20], and in the
presence of a factorization system it led to a richer theory in the work of Herrlich,
Salicrup and Strecker [12], applicable in topology, group theory and order. In the
90’s, on categories endowed with closure operators, a close resemblance with the
topological situation was obtained by Clementino, Giuli and Tholen [4], applicable
to Birkhoff closure spaces, uniform spaces, topological groups and locales. The idea
of using a class of closed morphisms in order to derive both proper and separated
morphisms from it was contained in Tholen’s [22], and gave rise to the theory of
functional topology as developed by Clementino, Giuli and Tholen in the presence
of a factorization system [5], which is applicable for instance to approach spaces
as demonstrated by Colebunders, Lowen and Wuyts [6]. An approach by Hofmann
and Tholen later focussed the attention on the proper maps as primary, and is
applicable to general categories of lax algebras [13].

In [16], after noticing the similarities between functional topology and the classes
of proper and separated morphisms of schemes introduced by Grothendieck, the au-
thors extended the framework from [5], making it somewhat more flexible without
greatly diminishing its power, and in particular making it applicable to schemes
[16]. Surprisingly, the resulting framework turns out to be well-suited to incor-
porate the Woronowicz category. The main new element we need is a shift from
finitely complete categories to appropriate monoidal categories. Indeed the category
Wor(C∗-Alg)op has no (known) binary products but is endowed with a monoidal
structure given by the maximal tensor product. In the classical functional topology
setup, a proper class of morphisms is a class containing the isomorphisms, which is
closed under compositions and pullback-stable. This last property does not seem
quite natural in a monoidal context. To find the appropriate replacement, we inves-
tigate generalized limits in a more general framework: that of categories endowed
with a relation R, that is a collection of compatible relations on the classes of mor-
phisms with common domain. The notion of a relation on a category is dual to the
notion of a cover relation in the sense of Janelidze [14], which we call a co-relation
in the present paper. Associated R-limits originate from considering cones in which
some of the involved morphisms are required to be in relation. For instance, we
define the R-pullback of two morphisms f : A −→ C and g : B −→ C to consist
of a universal object P with morphisms p1 : P −→ A and p2 : P −→ B such
that fp1 = gp2 and (p1, p2) ∈ R. Natural notions of R-commutative objects and
R-central morphisms relative to a relation can be defined and expressed in terms
of generalized limits. After establishing some basic results involving R-limits in
§4, in §5 we develop some approaches to functional topology in a category with R-
pulbacks and a final object. We will refer to these approaches as “tensor functional
topology”.

• The most basic approach takes an R-proper class F of proper morphisms as
input. With respect to F one defines compact objects as objects for which
the unique morphism to the final object is proper, separated morphisms as
morphisms with a commutative domain and proper diagonal, and Hausdorff
objects as commutative objects with proper diagonal. Starting the theory
from an R-proper class rather than a closed class is preferable as for general
R, we cannot naturally associate an R-proper class to a closed class due to
the weaker composability properties of R-pullback diagrams.

• If C is endowed with a factorization system (E,M), one can obtain a closed
class F of closed morphisms from a so-called (E,M)-closed structure (P,F0)
consisting of an auxiliary R-proper class F0 of closed immersions and an
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auxiliary closed class P of surjections, following [16]. In general, F will not
be R-proper. In case of general R, we may additionally require F to be an
R-proper class, in which case we speak of an (E,M)-proper structure with
proper morphisms F.

Many classical results from functional topology still hold true in tensor functional
topology, although sometimes additional centrality conditions need to be imposed.
To understand this, it is worth noting that if we restrict our category to the full
subcategory of commutative objects, the relationR restricts to the standard relation
for which any two morphisms with common domain are related.

In §6, we give an account of tensor functional topology in the opposite Woronow-
icz category Wor(C∗-Alg)op. The necessary background on this category is re-
called in §2. For a morphism f : A −→ B in Wor(C∗-Alg)op, we write F : B −→
M(A) for the associated Woronowicz-morphism. Two morphisms f : A −→ B
and f ′ : A −→ B′ are R-related if the associated Woronowicz-morphisms F and
F ′ : B′ −→M(A) commute. We make the following definitions for f : A −→ B:

• f is in F if F (B) ⊆ A;
• f is in M if F (B) = A;
• f is in E if F is an isometry.

We show that F is an R-proper class, for which compact objects correspond precisely
to unital algebras, and all commutative algebras are Hausdorff. Further, (E,M)
is a factorization system on Wor(C∗-Alg)op and (E ∩ F,M) is an (E,M)-proper
structure with F as its class of proper morphisms. Restricting Wor(C∗-Alg)op to
the commutative objects yields a category equivalent to locally compact Hausdorff
spaces with continuous maps. We show that the restriction of (E,M) to this cat-
egory corresponds precisely to the factorization system of dense maps and closed
embeddings. Further, the class F restricts precisely to the proper continuous maps.

The application of tensor functional topology to C∗-algebras raises the natural
question how much of this approach goes through for ordinary algebras. As we
recall in §3, a multiplier algebra is known to exist for nondegenerate k-algebras
over a commutative ring k. We further introduce the nondegenerate tensor product
between nondegenerate k-algebras. We obtain a Woronowicz category Wor(k-Alg)
of nondegenerate k-algebras which closely resembles the category Wor(C∗-Alg).
In particular, its opposite category can be endowed with the commutation relation
R and classes of morphisms F, M, E analogous to the higher classes. All higher
statements about the C∗-algebra case have precise parallels for nondegenerate k-
algebras, as shown in §6. In fact, under mild assumptions on a symmetric monoidal
closed category C, a Woronowicz category of nondegenerate semigroup objects in C
can be defined, and Wor(k-Alg) can be obtained from this general construction by
taking C to be the category of k-modules [17]. The development of tensor functional
topology in these more general Woronowicz categories is work in progress.

Acknowledgement. The authors wish to thank Venkatesh Chandrasekaran for mak-
ing suggestions on the English language used in this article.

2. The Woronowicz category of C∗-algebras

The construction of the Woronowicz category for C∗-algebras originates with
Woronowicz [24]. We recall the details for convenience and to fix notation. More
details and proofs can be found in Wegge-Olsen [23] and Lance [15]. We further
prove the existence and construction of co-equalizers in the Woronowicz category
(Theorem 2.14).
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Definition 2.1. A C∗-algebra is a (possibly noncommutative, possibly nonunital)
C-algebra equipped with a norm ‖−‖ and an involution (−)∗ : A −→ A such that

(1) (λx+ µy)∗ = λx∗ + µy∗ for each λ, µ ∈ C and x, y ∈ A.
(2) (xy)∗ = y∗x∗ for each x, y ∈ A.
(3) x∗∗ = x for each x ∈ A.
(4) A is complete with respect to the norm ‖ ‖.
(5) ‖xy‖ ≤ ‖x‖‖y‖ for each x, y ∈ A.
(6) ‖xx∗‖ = ‖x‖2 for each x ∈ A.

A C∗-algebra is called unital if it is unital as an algebra, i.e. if there is a unit
element 1A ∈ A such that 1Aa = a = a1A for each a ∈ A.

The C∗-morphisms are defined as follows:

Definition 2.2. Let A and B be C∗-algebras and let f : A −→ B be a function.
We say that f is a C∗-morphism if

(1) f is linear,
(2) f(xy) = f(x)f(y) for each x, y ∈ A,
(3) f(x∗) = f(x)∗ for each x ∈ A.

If A and B are unital, then we say that f is unital if f(1A) = 1B .

One can show that each C∗-morphism f is continuous and has norm ‖f‖ ≤ 1.
This choice of morphisms makes the C∗-algebras into a category, which we will call
C∗-Alg. The theorem of Gelfand–Naimark classifies the commutative C∗-algebras.
For a locally compact Hausdorff space X, we obtain the commutative C∗-algebra
C0(X,C) of continuous functions from X to C which vanish at infinity. For a
compact Hausdorff space X, we obtain the unital commutative C∗-algebra C(X,C)
of continuous functions from X to C. In this case, we have C(X,C) = C0(X,C).

Theorem 2.3 (Gelfand–Naimark). [23] The category of locally compact Hausdorff
spaces with proper maps as morphisms is equivalent to the category of commutative
C∗-algebras with C∗-morphisms as morphisms. The (contravariant) equivalence is
given by associating to each locally compact Hausdorff space X, the commutative
C∗-algebra C0(X,C). Furthermore, under this equivalence, the category of compact
Hausdorff spaces with continuous maps as morphisms is equivalent to the category
of unital commutative C∗-algebras with unital C∗-morphisms as morphisms.

While the proper continuous functions between locally compact Hausdorff spaces
correspond to the C∗-morphisms under this equialence, the same is not true for all
the continuous functions. To be able to model all continuous functions, we need
the concept of the multiplier algebra.

Definition 2.4. Let A be a C∗-algebra. We say that an ideal J of A is an es-
sential ideal if every other nonzero ideal in A has nonzero intersection with A. Or
equivalently, when the annihilator J⊥ = {a ∈ A | aJ = 0} is zero.

Definition 2.5. A unitization of a C∗-algebra A is an embedding of A into a unital
C∗-algebra B such that A is an essential ideal of B.

Since unital C∗-algebras correspond to compact Hausdorff spaces in Theorem
2.3, we see that the concept of unitization corresponds to compactification. The
largest compactification is of course the Čech-Stone compactification. Likewise,
every C∗-algebra has a largest unitization, which we will call the multiplier algebra.

Theorem 2.6. [23] Let A be a C∗-algebra. There exists a unique unitizationM(A)
of A such that if A is embedded as an ideal in a C∗-algebra B, then there exists
a unique morphism µ : B −→ M(A) such that µ restricts to the identity on A.
Moreover, µ is injective if and only if A is essential in B.
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We call M(A) the multiplier algebra of A.

If A = C0(X,C) for a locally compact Hausdorff space X, then the multiplier
algebra M(A) is exactly C(βX,C) ∼= Cb(X,C), the commutative C∗-algebra of
bounded continuous functions from X to C, where βX is the Čech-Stone compact-
ification of X.

The multiplier algebra is not functorial. More precisely, if f : A −→ B is a
C∗-morphism, then this does not need to induce a morphism M(A) −→M(B).

Definition 2.7. Let A be a C∗-algebra. Let H be a Hilbert space such that A is
embedded as a subspace of B(H). The strict topology on A is the locally convex
topology generated by the seminorms x −→ ‖xa‖ and x −→ ‖ax‖ for x ∈ B(H)
and a ∈ A.

One can prove that the multiplier algebra M(A) is the strict completion of A.
For C∗-algebras A and B, we call a C∗-morphism F : A −→ M(B) nondegen-

erate if F (A)B is dense in B. We are now able to state the following extension
theorem:

Theorem 2.8. [15] Let A and B be C∗-algebras and let F : A −→ M(B) be a
C∗-morphism. The following conditions are equivalent:

(1) F is nondegenerate.
(2) F (A)B = B.
(3) BF (A) = B.
(4) F is the restriction to A of a unique unital C∗-morphismM(A) −→M(B)

which is strictly continuous on the unit ball.

A C∗-morphism F : A −→ M(B) that satisfies the conditions of the previous
theorem will be called a Woronowicz-morphism from A to B. The unique unital
extension of F : A −→M(B) from (4) will be denoted by F :M(A) −→M(B).

The continuous maps between locally compact Hausdorff spaces X and Y corre-
spond exactly to the Woronowicz-morphisms from C0(Y,C) to C0(X,C). With this
in mind, we define the category Wor(C∗-Alg) to be the category of all C∗-algebras
with Woronowicz-morphisms. Note that the above theorem says that we can com-
pose such morphisms, thus the Woronowicz-category is well defined. Naturally, we
are more interested in the opposite category Wor(C∗-Alg)

op
since this category

can be seen as a category of “noncommutative topological spaces.”

Recall that the multiplier algebra was not functorial with respect to the C∗-
morphisms. This is solved by the Woronowicz-morphisms: any Woronowicz-morphism
from A to B gives rise to a unique unital C∗-morphism M(A) −→M(B).

We would like to form tensor products of C∗-algebras A and B. An obvious
definition is to form the algebraic tensor product A⊗B and to complete this with
respect to a suitable norm. A suitable norm should satisfy ‖x⊗y‖ ≤ ‖x‖‖y‖ (this is
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called a subcross norm). The largest possible subcross norm is called the maximal
norm:

Definition 2.9. Let A and B be C∗-algebras and define for each t ∈ A⊗B
µ(t) = sup{α(t) | α is a C∗-seminorm on A⊗B}.

This is called the maximal C∗-norm on A⊗B. The completion with respect to this
norm is denoted by A⊗µ B.

Definition 2.10. Let A, B and C be (possibly noncommutative, possibly nonuni-
tal) rings and let f : A −→ C and g : B −→ C be ring-morphisms. We say that f
and g commute if for each a ∈ A and b ∈ B we have that f(a)g(b) = g(b)f(a).

Tensor products do not form a coproduct for C∗-algebras, but we do have the
following theorem:

Theorem 2.11. [23] Let fk : Ak −→ Bk, k = 1, 2 be morphisms of C∗-algebras,
then f1⊗f2 extends by continuity to a morphism f1⊗µ f2 : A1⊗µA2 −→ B1⊗µB2.
If gk : Ak −→ C, k = 1, 2 are commuting morphisms of C∗-algebras, then g1 ⊗ g2
extends by continuity to a morphism g1 ⊗µ g2 : A1 ⊗µ A2 −→ C.

We collect some facts about the category Wor(C∗-Alg):

Proposition 2.12. If F : A −→ M(B) is a Woronowicz-morphism from A to B
which constitutes an isomorphism in Wor(C∗-Alg), then F (A) = B.

Proof. Let G : B −→M(A) be the inverse of F . Take an a ∈ A, then we have by
nondegeneracy of G that there exist bi ∈ B and ai ∈ A such that a =

∑
G(bi)ai.

But then F (a) =
∑
biF (ai). But since B is an ideal of M(B), this implies that

F (a) ∈ B. This shows that F (A) ⊆ B. Likewise, we have that G(B) ⊆ A. Now
take b ∈ B, then b = F (G(b)), and thus b ∈ F (A). �

Proposition 2.13. [23] Any surjection of C∗-algebras p : A −→ B induces a
nondegenerate morphism P : A −→M(B).

Theorem 2.14. The co-equalizer in the category Wor(C∗-Alg) exists. In partic-
ular, the co-equalizer of two nondegenerate C∗-morphisms F,G : A −→ M(B) is
given by B/J , where J is the two-sided ideal in B generated by F (a)b−G(a)b and
bF (a)− bG(a) for each a ∈ A and b ∈ B.

Proof. Let p : B −→ B/J be the canonical surjection. This surjection extends to
a nondegerate morphism P : B −→ M(B/J). We prove that PF = PG. Let
(bi)i∈I be an approximate unit in B, i.e. it is a net in B which converges strictly to
the unit in M(B). By strict continuity, we know that (P (bi))i∈I converges to the
unit inM(B/J) (see [23]). Thus follows that F (a)bi converges strictly to F (a) and
that G(a)bi converges strictly to G(a). By definition of C as a quotient space, we
have that P (F (a)bi) = P (G(a)bi) and since P (F (a)bi) converges to P (F (a)) and
P (G(a)bi) converges to P (G(a)), we have that P (G(a)) = P (G(a)).

Let H : B −→M(C) be a Woronowicz morphism from B to C such that HF =
HG. Then H(J) = 0 and thus there is a unique morphism K : B/J −→ M(C)
such that H = KP . This is clearly nondegenerate since H is. �

Proposition 2.15. Let G : A −→M(C) and G : B −→M(C) be two Woronowicz-
morphisms. If F and G commute, then so do their extensions F and G.

Proof. Take x ∈ M(A) and y ∈ M(B). Then there exist nets (ai)i∈I in A and
(bj)j∈J in B such that ai −→ x strictly and bi −→ y strictly. But then F (ai) con-

verges strictly to F (x) and G(bj) converges strictly to G(y). Then F (ai)G(bj) con-

verges strictly to F (x)G(y) and G(bj)F (ai) converges strictly to G(y)F (x). Since

F (ai)G(bj) = G(bj)F (ai), it follows that F (x)G(y) = G(y)F (x). �
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Proposition 2.16. [15] Let M : A −→ M(C) be an injective and nondegenerate
C∗-morphism. Then M extends uniquely to an isometric, unital C∗-morphism
M : M(A) −→ M(C). Furthermore, the image of M is given by the idealizer of
M(A), i.e.

M(M(A)) = {x ∈M(C) | xM(A) ⊆M(A) and M(A)x ⊆M(A)}.

3. The Woronowicz category of associative algebras

In this section we generalize the Woronowicz category to nondegenerate asso-
ciative algebras over a commutative ground ring k with unit. The basic notions
necessary for this generalization can be found in De Commer, Van Daele [7]. In
[17], we show that under mild assumptions on a symmetric monoidal closed cat-
egory C, a Woronowicz category of nondegenerate semigroup objects in C can be
defined. The Woronowicz category of this section can be obtained from this general
construction by taking C to be the category of k-modules. However, the general
categorical proofs turn out to be much more involved. In this section we provide a
self-contained treatment of the results for associative k-algebras.

Definition 3.1. A k-algebra A is nondegenerate if the following hold for all a ∈ A:

(1) If ab = 0 for each b ∈ A, then a = 0.
(2) If ba = 0 for each b ∈ A, then a = 0.
(3) We have that A = AA := {

∑
i aia

′
i | ai, a′i ∈ A}.

The category of all nondegenerate k-algebras with the usual k-algebra morphisms
is denoted by k −Alg.

Definition 3.2. The multiplier algebra of a nondegenerate k-algebra A is the al-
gebra M(A) consisting of couples (λ, ρ), where λ and ρ are maps A −→ A such
that

ρ(a)b = aλ(b) for all a, b ∈ A.
This k-algebra is a k-unital algebra equipped with the following operations:

(1) For all (λ, ρ), (λ′, ρ′) ∈M(A) and r, s ∈ A, we set

r(λ, ρ) + s(λ′, ρ′) = (rλ+ sλ′, rρ+ sρ′).

(2) For all (ρ, λ), (ρ′, λ′) ∈M(A), we set

(λ, ρ) · (λ′, ρ′) = (λ ◦ λ′, ρ′ ◦ ρ).

(3) The unit is given by (IdA, IdA).

Lemma 3.3. If A is a nondegenerate k-algebra and if (λ, ρ) ∈M(A), then both λ
and ρ are k-linear. Furthermore, it holds for each a, b ∈ A that

λ(ab) = λ(a)b and ρ(ab) = aρ(b).

Proof. Let a, b, c ∈ A be arbitrary, and let r, s ∈ k, then

cλ(ra+ sb) = ρ(c)(ra+ sb)

= rρ(c)a+ sρ(c)b

= c(rλ(a) + sλ(b))

Since c is arbitrary and A is nondegenerate, it follows that λ(ra+sb) = rλ(a)+sλ(b).
The other statements in the lemma have a similar proof. �

There is a natural k-algebra morphism ι : A −→M(A) : a −→ (λa, ρa) where

λa(b) = ab and ρa(b) = ba.

Lemma 3.4. Let A be a nondegenerate k-algebra. Then the map ι : A −→M(A)
is injective.
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Proof. Assume that for an a ∈ A, we have that ι(a) = 0. This means that λa = 0
and ρa = 0. Hence for each b ∈ A, we have that ab = 0 and ba = 0. The
nondegeneracy of A then implies that a = 0. Thus ι is injective. �

Lemma 3.5. Let A be a nondegenerate k-algebra, then we have for each (ρ, λ) ∈
M(A) that

(λ, ρ) · ι(a) = ι(λ(a)) and ι(a) · (λ, ρ) = ι(ρ(a)).

Thus ι(A) is an ideal of M(A). Hence if A is unital, then ι is an isomorphism.

Proof. We have that

(λ, ρ) · ι(a) = (λλa, ρaρ).

For b ∈ A, we have that

(λλa)(b) = λ(ab) = λ(a)b.

Thus λλa = λλ(a). We also have

(ρaρ)(b) = ρ(b)a = aλ(b).

Thus ρaρ = ρλ(b). The rest of the lemma is similar. �

Corollary 3.6. Let A be a nondegenerate k-algebra, and let (λ, ρ) ∈ M(A). If
(λ, ρ) · ι(a) = 0 for each a ∈ A, then (λ, ρ) = 0.

In what follows, we will usually not explicitly write ι. Thus we view A as a
subset of M(A).

Definition 3.7. Let A and B be nondegenerate k-algebras. We say that an algebra
morphism F : A −→ M(B) is nondegenerate if B = F (A)B and B = BF (A). A
Woronowicz-morphism between A and B is then defined as a nondegenerate algebra
morphism F : A −→M(B).

Proposition 3.8. A Woronowicz-morphism F : A −→ M(B) can be extended to
a unique unital algebra morphism F :M(A) −→M(B).

Proof. Let (λ, ρ) ∈M(A). Every b ∈ B can be written as b =
∑
i F (ai)bi. Now we

define λ′(b) =
∑
F (λ(ai))bi. Using nondegeneracy of A and F , one easily checks

that this is well-defined. Similarly, one defines ρ′(b) =
∑
biF (ρ(ai)). The required

extension is F :M(A) −→M(B) : (λ, ρ) −→ (λ′, ρ′).

Assume that F̂ : M(A) −→ M(B) is another extension of F . Then we have for
each x ∈M(A) and b′F (a′) ∈ B that a′x ∈ A. Hence

b′F (a′)(F (x)− F̂ (x)) = 0

Thus for each b ∈ B we have that b(F (x) − F̂ (x)) = 0. It follows that F (x) =

F̂ (x). �

This proposition has as a corollary that we can compose nondegenerate maps.
Indeed, if F : A −→ M(B) and G : B −→ M(C) are nondegenerate, then G
extends to a morphism G : M(B) −→ M(C), and the composition GF makes
sense.

Lemma 3.9. The composition GF is nondegenerate.

Proof. Take c ∈ C, then by nondegeneracy of G, we can write c =
∑
iG(bi)ci,

where bi ∈ B and ci ∈ C. Now, since F is nondegenerate, we can write bj =∑
j F (ai,j)bi,j , where a ∈ A and b′ ∈ B. Thus c =

∑
i,j G(F (ai,j))F (bi,j)ci and

G(bi,j)ci ∈ C. Thus we have shown that G(F (A))C = C. Similarly, it follows that

CG(F (A)) = C. �
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We can now form the category of all k-algebras with Woronowicz morphisms.
We will denote this category as

Wor(k-Alg)

Proposition 3.10. Let F : A −→M(B) be an injective, nondegenerate map, then
its extension F :M(A) −→M(B) is injective too.

Proof. Assume that x ∈ M(A) satisfies F (x) = 0. Then for each a ∈ A, we have
that F (ax) = F (a)F (x) = 0. Since f is injective on A and since ax ∈ A, it follows
that ax = 0. This holds for each a ∈ A; it follows that x = 0. �

Proposition 3.11. For every surjective algebra morphism g : A −→ B, we have
that G := ιg : A −→M(B) is nondegenerate and that this extends to a morphism
G :M(A) −→M(B).

Proof. Take b ∈ B, then there exists an a ∈ A such that g(a) = b. We can
write a =

∑
i a
′
ia
′′
i . Hence b =

∑
i g(a′i)g(a′′i ). Since g(A) ⊆ B, it follows that

g(a′i), g(a′′i ) ∈ B. Hence b ∈ g(A)B and b ∈ Bg(A). �

Proposition 3.12. If F : A −→M(B) is a Woronowicz-morphism which consti-
tutes an isomorphism in Wor(k-Alg), then F (A) = B.

Proof. Let G : B −→M(A) be the inverse of f . Take an a ∈ A; then we have by
nondegeneracy of G that there exists bi ∈ B and an ai ∈ A such that a =

∑
G(bi)ai.

But then F (a) = biF (ai). But since B is an ideal of M(B), this implies that
F (a) ∈ B. This shows that F (A) ⊆ B. Likewise, we have that G(B) ⊆ A. Now
take b ∈ B, then b = F (G(b)), and thus b ∈ F (A). �

The quotients of nondegenerate algebras do not need to be nondegenerate. But
we do have the following

Proposition 3.13. Let A be a nondegenerate algebra and let I be an ideal of A.

We let Î = {a ∈ A | ab ∈ I and ba ∈ I for all b ∈ B}. Then

(1) Î is an ideal and A/Î is nondegenerate.
(2) If F : A −→ M(B) is a nondegenerate morphism between nondegenerate

algebras such that F (I) = 0. Then it follows that F (Î) = 0 and F induces

a nondegenerate morphism A/Î −→M(B).

Proof.

(1) That Î is an ideal is easily checked. Assume that p(x)p(y) = 0 for all y ∈ A.

Then holds that xy ∈ Î for all y ∈ A. It follows that for each y′ ∈ A that
xyy′ ∈ I. But since A is nondegenerate, we know that every element of
A has the form

∑
i yiy

′
i. So for every a ∈ A, we have that xa ∈ I. Thus

follows that x ∈ Î and thus p(x) = 0.
Since A = AA, it follows at once that A/J = (A/J)(A/J).

(2) Take x ∈ Î. Then holds for each a ∈ A that ax ∈ I and xa ∈ I. Take
b ∈ B, then by nondegeneracy, we can write b =

∑
i F (ai)bi. But then

F (x)b =
∑
i

F (x)F (ai)bi =
∑
i

F (xai)bi = 0.

It follows that F (x) = 0. The remainder of the proof is now clear. �

Theorem 3.14. The co-equalizer in the category Wor(k-Alg) exists. In particular,
the co-equalizer of two nondegenerate morphisms F,G : A −→ M(B) is given by

B/Î, where I is the two-sided ideal in B generated by F (a)b−G(a)b and bF (a)−
bG(a) for each a ∈ A and b ∈ B.
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Proof. Since B is nondegenerate, it follows that B/Î is nondegenerate. Let p :

B −→ B/Î be the canonical surjection. This surjection is nondegenerate and thus

extends to a nondegenerate surjection P : M(B) −→ M(B/Î). We prove that

PF = PG. Indeed, take P (b) ∈ B/Î, then

[P (F (a))− P (G(b))](P (b)) = P (F (a)b−G(a)b) = 0.

Hence P (F (a)) = P (G(a)) for each a ∈ A.
Let H : B −→ M(C) be a nondegenerate morphism such that HF = HG. Then

H(Î) = 0 and thus there is a unique morphism K : B/Î −→ M(C) such that
H = KP . This is clearly nondegenerate since H is. �

Proposition 3.15. Let F : A −→M(C) and G : B −→M(C) be two Woronowicz-
morphisms. If F and G commute, so do their extensions F and G.

Proof. Take x ∈M(A) and y ∈ B. Take c ∈ C, then we can write c =
∑
i ciF (ai).

Note that aix ∈ A. Then

cF (x)G(y) =
∑
i

ciF (aix)G(y)

=
∑
i

ciG(y)F (aix)

=
∑
i

ciG(y)F (ai)F (x)

=
∑
i

ciF (ai)F (y)F (x)

= cG(y)F (x).

It follows that F (x)G(y) = G(y)F (x). Now let x ∈ M(A) and y ∈ M(B). Simi-
larly, iIt follows that F (x)G(y) = G(y)F (x). �

Definition 3.16. For an associative k-algebra A and for an ideal I of A, we say
that I is nondegenerate if for each x ∈ A the following hold:

(1) If for each y ∈ A we have that yx ∈ I, then x ∈ I.
(2) If for each y ∈ A we have that xy ∈ I, then x ∈ I.

The ideal A is always nondegenerate in A. Furthermore, an algebra is nonde-
generate if and only if A = AA and {0} is a nondegenerate ideal of A.

Proposition 3.17. The intersection of nondegenerate ideals is nondegenerate.

In particular, every ideal I can be extended to a smallest nondegenerate ideal

which contains it. We will denote this ideal by Ĩ.

We give a more explicit description of {̃0}.

Proposition 3.18. Let A be an associative k-algebra. We have that a ∈ {̃0} if and
only if there exists n ≥ 0 such that for all b1, ..., bn ∈ A we have b1b2...bna = 0 and
ab1b2...bn = 0.

Proposition 3.19. If A and B are nondegenerate k-algebras, then A ⊗ B/{̃0} is
a nondegenerate k-algebra.

For nondegenerate k-algebras A and B, we put A ⊗̃B = A⊗B/{̃0} and we call
it the nondegenerate tensor product.

Proposition 3.20. If k is a field, then A ⊗̃B = A⊗B.
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Proof. Assume for a⊗ b we have that aa′ ⊗ bb′ = 0 for all a′ ∈ A and b′ ∈ B. This
implies that there exists finitely supported maps λa′,b′ : B −→ R such that

bb′ =
∑
f∈B

λa′,b′(f)f,

and
λa′,b′(f)aa′ = 0 for all f ∈ B

If λa′,b′(f) = 0 for all f ∈ B, then follows that bb′ = 0. Otherwise, it follows by
taking inverses that aa′ = 0.
Thus if there exists some b′ such that bb′ 6= 0, then it must hold that aa′ = 0 for
all a′ ∈ A. Thus by nondegeneracy of A, we have that a = 0 and thus a⊗ b = 0
Otherwise, it must hold that bb′ = 0 for all b′ ∈ B. But then b = 0 and hence
a⊗ b = 0. �

Proposition 3.21. For nondegenerate algebras A and B, there exist commuting,
nondegenerate maps

JA : A −→M(A) −→M(A⊗̃B)

and
JB : B −→M(B) −→M(A⊗̃B).

Proof. Take (λ, ρ) ∈M(A), let p : A⊗B −→ A⊗̃B be the canonical quotient. Take
p(a⊗b) ∈ A⊗̃B, then we set λ′(p(a⊗b)) = p(λ(a)⊗b) and ρ′(p(a⊗b)) = p(ρ(a)⊗b).
This is well-defined: if a ⊗ b ∈ {̃0} and if I is any nondegenerate ideal of A ⊗ B,
then a⊗ b ∈ I. Thus (x⊗ y)(λ(a)⊗ b) = (xλ(a))⊗ (yb) = (ρ(x)a)⊗ (yb) ∈ I. By
nondegeneracy of I follows that λ(a) ⊗ b ∈ I. Since this is true for all nondegen-

erate ideals of A ⊗ B, it follows that λ(a) ⊗ b ∈ {̃0}. Similarly, we have that ρ′ is
well-defined.

So we have an element (λ′, ρ′) ∈ M(A⊗̃B). This shows that we have an mor-
phism

M(A) −→M(A⊗B) : (λ, ρ) −→ (λ′, ρ′).

Similarly, we also have a morphism M(B) −→ M(A ⊗ B). These morphisms are
clearly commuting. Note that for (λa, ρa) ∈M(A), we have λ′a(p(a′⊗b′)) = p(aa′⊗
b′) and λ′a(p(a′⊗b′)) = p(a′a⊗b′). We check nondegeneracy. Take p(a⊗b) ∈ A⊗̃B.
Then we can write a =

∑
i aia

′
i. But then

p(a⊗ b) =
∑
i

p(aia
′
i ⊗ b) =

∑
i

λ′ai(p(a
′
i ⊗ b) ∈ JA(A)(A⊗̃B).

�

4. Generalized colimits

It is well known that in categories without (useful) coproducts, a monoidal struc-
ture may sometimes serve as an alternative. More generally, if a category is endowed
with compatible relations RC on the sets of morphisms with common domain C,
there results a natural notion of R-coproduct. The link between such relations on
the one hand, and monoidal structures on the other hand, is studied by Janelidze
[14]. In §4.1, we describe R-coproducts in the Woronowicz categories from the pre-
vious sections. In §4.2, we introduce more general R-colimits. Under an additional
assumption on R, we prove some properties involving combinations of R-colimits.
For instance, we show that in general R-pushouts cannot be composed, but they
can be composed under an additional centrality requirement for one of the involved
morphisms. In the sequel, we will make fundamental use of the dual notions, which
are discussed in §4.3.
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4.1. Co-relations and generalized coproducts. Recall that for a category C
and an object C ∈ C, the slice category C/C is the category of all morphisms with
codomain C.

Definition 4.1. [14] A co-relation R on a category C consists of the datum of a
relation RC on Ob(C/C) for every object C ∈ C, such that the following properties
are satisfied:

(1) If f : A −→ C and g : B −→ C are RC-related and if h : D −→ A is an
arbitrary morphism, then fh and g are RC-related.

(2) If f : A −→ C and g : B −→ C are RC-related and if h : C −→ D is an
arbitrary morphism, then hf and hg are RD-related.

For simplicity, we usually denote RC simply by R for all objects C. In [14], a co-
relation R on a category is called a cover relation and the author investigates cover
relations associated to the natural order on subobjects (whence the terminology),
as well as cover relations associated to monoidal structures. In this paper we are
mainly interested in (generalizations of) the latter type, where in particular R is
symmetric. Note that in general, for a co-relation R on C, the opposite relations Rop

C

for C ∈ C do not define a co-relation due to the asymmetric nature of condition (1).
If they do define a co-relation, we denote it by Rop and we call R a bi-co-relation
(bicover relation in [14]).

Example 4.2.
(1) If C is an arbitrary category, then we can say that f : A −→ C and g :

B −→ C are always R-related. We will call this co-relation standard.
(2) Let F : A −→M(C) andG : B −→M(C) be morphisms in Wor(C∗-Alg).

We say that F and G are R-related if they commute.
(3) Let Ring be the category of all (possibly noncommutative) unital rings

with as morphisms the usual ring homomorphisms. Two morphisms f and
g are R-related if they commute.

(4) Let G : A −→ M(C) and G : B −→ M(C) be in Wor(k-Alg). We say
that F and G are R-related if they commute.

With these examples in mind, we make the following definition:

Definition 4.3. Let C be a category with a co-relation R on C.

(1) A morphism f : B −→ A in C is R-central if (f, 1A) ∈ R and R-op-central
if (1A, f) ∈ R.

(2) An object A ∈ C is R-commutative if (1A, 1A) ∈ R.

The central morphisms in C constitute a left ideal in C, that is if f : A −→ B is
central and h : A′ −→ A is arbitrary, then fh is central. The commutative objects
in C form a full subcategory Com(C) ⊆ C. The co-relation R on C gives rise to
an obvious restricted co-relation on any subcategory. In particular, the restricted
co-relation on Com(C) is the standard relation on Com(C).

A co-relation R on a category can be used to generalize the notions of coproduct
and pushout:

Definition 4.4. Let A and B be objects of a category C. The R-coproduct of
A and B is an object Q together with R-related morphisms qA : A −→ Q and
qB : B −→ Q such that for every two R-related morphisms fA : A −→ C and
fB : B −→ C, there is a unique morphism f : Q −→ C such that fA = fqA and
fB = fqB .
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We denote the R-coproduct of A and B by A
∐R

B. Clearly, if it exists, an
R-coproduct is unique up to isomorphism. In [14], Janelidze characterizes the co-
relations R for which the associated R-coproduct defines a monoidal structure on

C. Note that unless R is symmetric, we do not necessarily have A
∐R

B ∼= B
∐R

A.
We can give a similar definition for the R-pushout:

Definition 4.5. Let f : C −→ A and g : C −→ B be morphisms in a category
C. The R-pushout of f and g is an object Q together with R-related morphisms
qA : A −→ Q and qB : B −→ Q such that qAf = qBg and such that for every two
R-related morphisms fA : A −→ C and fB : B −→ C with fAf = fBg, there is a
unique morphism h : Q −→ C such that fA = hqA and fB = hqB .

We denote the R-pushout of f and g as above by A
∐R
C B. Again, if it exists,

an R-pushout is unique up to isomorphism. We call qB the R-pushout of f by g,
and by a pushout of f we mean a pushout qB of f by some morphism g.

If R is the standard co-relation, then the R-coproduct and R-pushout are simply
the usual coproduct and pushout.

Theorem 4.6. In the category Wor(C∗-Alg), R-coproducts exist and are given
by the maximal tensor product.

Proof. Let A and B be C∗-algebras. We can form the maximal tensor product
A⊗µ B. It is shown in [23] that

A⊗µ B ⊆M(A)⊗µM(B) ⊆M(A⊗µ B).

Thus the canonical maps qA : A −→ M(A) ⊗µM(B) : a −→ a ⊗µ 1 and qB :
B −→M(A)⊗µM(B) : b −→ 1⊗µ b extend to maps QA : A −→M(A⊗µ B) and
QB : B −→ M(A ⊗µ B). These maps are clearly commuting. Furthermore, they
are strictly continuous since

‖qA(a)(a′ ⊗µ b′)‖ = ‖(aa′)⊗µ b′‖ ≤ ‖aa′‖‖b′‖.

Now let FA : A −→ M(C) and FB : B −→ M(C) be commuting nondegenerate
morphisms. Then we define F : A⊗B −→M(C) by f(a⊗ b) = fA(a)fB(b). This
is clearly the unique map for which FA = FQA and FB = FQB . We must prove
that F is nondegenerate. For this, take c ∈ C. Then we can write c =

∑
i FA(ai)ci

and we can write ci =
∑
j FB(bi,j)ci,j . Thus ci =

∑
i,j FA(ai)FB(bi,j)ci,j ∈ f(A ⊗

B)C. �

Corollary 4.7. The category Wor(C∗-Alg) is naturally a monoidal category with
as monoidal product the R-coproduct and with C as unit.

Proof. It is well-known that the category of C∗-algebras with usual C∗-morphisms
is monoidal with as monoidal product the maximal tensor product. Thus for each
three C∗-algebras A, B and C we have a suitable isomorphism ψ : A⊗µ (B⊗µC)→
(A⊗µB)⊗µC. This induces a nondegenerate morphism since ψ is surjective. Hence,
we have an isomorphism in Wor(C∗-Alg). �

Theorem 4.8. In the category Wor(k-Alg), R-coproducts exist and are given by
the nondegenerate tensor product ⊗̃.

Proof. Let A and B be k-algebras. We can form the tensor product A⊗̃B. We
have shown that we have maps

JA : A −→M(A) −→M(A⊗B)

and

JB : B −→M(B) −→M(A⊗B)
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which are nondegenerate and commuting.
Now let FA : A −→ M(C) and FB : B −→ M(C) be commuting nondegenerate
morphisms. Then we define H : A⊗B −→M(C) by H(a⊗ b) = FA(a)FB(b). We

show that H(Ĩ) = 0, which proves that h descends to a map F : A⊗̃B −→M(C).

So take a ⊗ b ∈ Ĩ. Then there is some k ≥ 0 such that for each y1, ..., yk ∈ A ⊗ B
holds that y1...yk(a ⊗ b) = 0. Now take c ∈ C, by nondegeneracy of FA and FB
and by using that FA and FB are commuting, we can write c as

c =
∑

i1,...,ik

cFA(ai1)FB(bi1)...FA(aik)FB(bik).

Thus

cFA(a)FB(b) = c
∑

i1,...,ik

FA(ai1 ...aika)FB(bi1 ...bikb)

= c
∑

i1,...,ik

H((ai1 ⊗ bi1)...H(aik ⊗ bik)(a⊗ b))

= 0

Since c is arbitrary, it follows that FA(a)FB(b) = 0, as desired.
The map F is clearly the unique map for which FA = FQA and FB = FQB . We

must prove that F is nondegenerate. For this, take c ∈ C. Then we can write c =∑
i FA(ai)ci and we can write ci =

∑
j FB(bi,j)ci,j . Thus ci =

∑
i,j FA(ai)FB(bi,j)ci,j ∈

H(A⊗B)C. �

Corollary 4.9. The category Wor(k-Alg) is naturally a monoidal category with
as monoidal product ⊗̃ and with as unit k.

Proof. We show that the tensor product is associative as the rest of the statement
is obvious. Let A,B,C be nondegenerate k-algebras and let ψ : A ⊗ (B ⊗ C) →
(A⊗B)⊗ C be the canonical isomorphism such that ψ(a⊗ (b⊗ c)) = (a⊗ b)⊗ c.
This induces a canonical isomorphism ψ̃ : A⊗̃(B⊗̃C) → (A⊗̃B)⊗̃C. Since ψ̃ is
an isomorphism, it is nondegenerate and thus it implements an isomorphism in
Wor(k-Alg). �

4.2. Generalized colimits. The following notion generalizes R-coproducts and
R-pushouts:

Definition 4.10. Let F : I −→ C be a functor, let R be a co-relation on C as
before, and let r be a relation on Ob(I). An (r, R)-cocone on F consists of a cocone
(C, (ϕi : F (i) −→ C)i) such that irj implies ϕiRϕj . An (r, R)-colimit on F is a
universal cocone on F .

Obviously, if it exists, an (r, R)-colimit of F is unique.

Example 4.11. (1) If r = ∅ and R is the standard co-relation on C, then (r, R)-
colimits are categorical colimits in C.

(2) Let I = 〈a b〉 be the “coproduct category”. If r = {(a, b)}, then an (r, R)-
colimit is an R-coproduct. If r = {(a, b), (b, a)}, we call an (r, R)-colimit a
two-sided R-coproduct. If R is symmetric, an R-coproduct is automatically
two-sided.

(3) Let I = 〈a ← c −→ b〉 be the “pushout category”. If r = {(a, b)}, then an
(r, R)-colimit is an R-pushout. If r = {(a, b), (b, a)}, we call an (r, R)-colimit
a two-sided R-pushout. If R is symmetric, an R-pushout is automatically
two-sided.

(4) Let I = 〈a〉 be the “object category” with ara. The diagram determined
by the object A has (r, R)-colimit (A, 1A : A −→ A) if and only if A
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is commutative with respect to R. For C = Ring the category of unital
rings with the commutation co-relation R from Example 4.2 (3), the (r, R)-
colimit of the diagram determined by the ring A is the canonical morphism
A −→ A/[A,A] where [A,A] is the ideal generated by the commutators
aa′ − a′a for a, a′ ∈ A.

(5) Let I = 〈b −→ a〉 be the “morphism category” with r = {(b, a)} (resp.
r = {(a, b)}). The diagram determined by the morphism f : B −→ A has
(r, R)-colimit (A, 1A : A −→ A, f : B −→ A) if and only if f is central (resp.
op-central) with respect to R. For C = Ring the category of unital rings with
the commutation co-relation R from Example 4.2 (3), the (r, R)-colimit of
the diagram determined by the ring map f : B −→ A is the canonical
morphism A −→ A/[f(B), A] where [f(B), A] is the ideal generated by the
commutators f(b)a− af(b) for a ∈ A and b ∈ B.

Proposition 4.12. Suppose C has R-coproducts as well as categorical coequalizers.
Then C has R-pushouts.

Proof. For morphisms f : C −→ A and g : C −→ B, consider the R-coproduct
(Q, sA : A −→ Q, sB : B −→ Q) and the categorical equalizer q : Q −→ E of sAf
and sBg. By Definition 4.1(2), qsA and qsB are R-related. It is easily seen that
they make E into an R-pushout of f and g. �

In order to proceed, it is useful to consider how a co-relation R interacts with
certain classes of morphisms. Consider the following weakening of the notion of
a pretopology on a category C: a cover system T on C consists of the datum, for
every object C ∈ C, of a collection T (C) of families of morphisms (fi : Ci −→ C)i.
Dually, an co-cover system S on C consists of the datum, for every object C ∈ C, of
a collection S(C) of families of morphisms (gi : C −→ Ci)i. A class of morphisms
T in C gives rise to a cover system T with T(C) = {f : D −→ C | f ∈ T} and a
co-cover system T with T(C) = {f : C −→ D | f ∈ T}.

Definition 4.13. Let R be a co-relation on a category C.
(1) Let T be a cover system on C. We say that R is T -generated if the following

condition holds for morphisms f : A −→ C and g : B −→ C in C and a
collection of morphisms (fi : Ai −→ A)i in T (A): if for all i we have ffiRg,
then we have fRg.
If R is a bi-co-relation, we call R bi-T -generated if both R and R

op

are
T -generated.

(2) Let S be an co-cover system on C. We say that R is T -cogenerated if the
following condition holds for morphisms f : A −→ C and g : B −→ C in C
and a collection of morphisms (gi : C −→ Ci)i in T (A): if for all i we have
gifRgig, then we have fRg.

Consider the classes Epi of epimorphisms and Mono of monomorphisms in C, the
cover system Epi of jointly epimorphic families and the co-cover system Mono of
jointly monomorphic families. Note that the co-relations listed in Example 4.2 are
bi-Epi-generated andMono-op-generated (and hence in particular bi-Epi-generated

and Mono-co-generated).

Lemma 4.14. Suppose C is endowed with a bi-co-relation R.

(1) Suppose Rop is Epi-generated. Suppose f : B −→ A has an (r, R)-colimit
q : A −→ A′ as in Example 4.11 (5). Then q is an epimorphism and
qf : B −→ A′ is central.

(2) Suppose R is bi-Epi-generated. Suppose A has an (r, R)-colimit q : A −→ A′

as in Example 4.11 (4). Then q is an epimorphism and A′ is commutative.
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Under the assumptions of Lemma 4.14, we call q : A −→ A′ in (1) the central-
izator of f : B −→ A and q : A −→ A′ the commutativizator of A.

Proof. That q is an epimorphism immediately follows from the universal property of
the colimits. In case (1), we consider the epimorphism q. By the assumption on Rop,
from qfRq we deduce qfR1A′ . In case (2), we twice consider the epimorphism q :
A −→ A′. By the assumptions upon R and Rop, from qRq we deduce 1A′R1A′ . �

Proposition 4.15. Suppose C is endowed with a bi-Epi-generated bi-co-relation R.
Consider morphisms f : C −→ A and g : C −→ B with two-sided R-coproduct
(Q, sA : A −→ Q, sB : B −→ Q) as in Example 4.11(2).

(1) sAf = sBg is central and op-central.
(2) If A and B are commutative, then so is Q.

Proof. (1) We show centrality, that is sAfR1Q. Since {sA, sB} is jointly epimorphic,
it suffices that sAfRsA and sAfRsB . The second relation follows from sARsB , and
the first one can be rewritten as sBgRsA which follows from sBRsA.

(2) Using twice the family {sA, sB}, 1QR1Q is equivalent to the following four
relations: sARsA, sBRsB , sARsB , sBRsA. The first two follow from commutativity
of A and of B, the last two follow from the definition of twosided R-pushout. �

The following example shows that is not always true that the composition of
R-pushout diagrams is an R-pushout diagram, or that the R-pushout of an isomor-
phism remains an isomorphism.

Example 4.16. Take the category of unital algebras over R such that f : A −→ C
and g : B −→ C are R-related if and only if they commute. For central morphisms
A −→ B and A −→ C, it is easily checked that the R-pushout is given by B ⊗A C.
Now consider the following diagram, where H is the quaternion algebra:

R ι //

1R

��

H 1H //

1H

��

H

p

��

R
ι

// H
q
// (H⊗H)/I

The left diagram is clearly an R-pushout diagram. The right diagram is by defini-
tion an R-pushout diagram, where I is the ideal generated by h ⊗ 1 − 1 ⊗ h. The
composite diagram would only be a pushout diagram if (H ⊗ H)/I ∼= H. This is
not the case since otherwise we would have p = q = 1H, but the map 1H : H −→ H
is not central.

In general, we have the following:

Proposition 4.17. Suppose R is a bi-Epi-generated bi-co-relation on C. Consider
the following composition of diagrams in which γ is R-central:

C
β

//

α

��

B
γ

//

α′

��

D

α′′

��

A
β′

// P
γ′

// Q
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(1) If both squares are two-sided R-pushouts, then so is the composed diagram.
(2) If the left square and the composed diagram are two-sided R-pushouts, then

so is the right square.

Proof. (1) Obviously, we have γ′β′Rα′′ since γ′Rα′′. Consider morphisms f : A −→
E and g : D −→ E with fRg. It follows that fRgγ, so from the left R-pushout
we obtain a unique morphism x : P −→ E with f = xβ′ and gγ = xα. If we can
show that xRg, then we obtain the required unique morphism x′ : Q −→ E. Since
{β′, α′} is jointly epimorphic, it suffices that xβ′Rg and xαRg. The first relation
is fRg which is given. For the second relation, centrality of γ gives γR1D, whence
gγRg which can be rewritten as xαRg as desired.

(2) If we can show that γ′Rα′′, we can finish the proof in the usual fashion.
Along the lines of part (1), we use the jointly epimorphic {β′, α′} to show this. �

Example 4.18. In the category of unital k-algebras over a commutative ground ring,
if in the notations of Proposition 4.17 α, β and γ are central, part (1) of the result
corresponds to the familiar change of rings formula (A⊗C B)⊗B D ∼= A⊗C D.

Next we give a construction of R-pushouts using centralizations and R-pushouts
of central morphisms.

Proposition 4.19. Suppose R is a bi-Epi-generated bi-co-relation on C. Consider
morphisms α : C −→ A and β : C −→ B. Suppose the centralizators qA : A −→ A′

of α and qB : B −→ B′ of β exist. Suppose further that (Q, sA′ : A′ −→ Q, sB′ :
B′ −→ Q) is the two-sided R-pushout of qAα and qBβ. Then (Q, sA′qA, sB′qB) is
the two-sided R-pushout of α and β.

Proof. It suffices to check the universal property. Consider f : A −→ D and
g : B −→ D with fRg, gRf and fα = gβ. This implies fαRg, in other words
gβRg, and gβRf , in other words fαRf . From the universal properties of the
centralizators, we thus obtain f ′ : A′ −→ D with f ′qA = f and g′ : B′ −→ D
with g′qB = g. If we can show f ′Rg′ and g′Rf ′, we obtain the required morphism
Q −→ D. But since both qA and qB are epimorphisms, it suffices that f ′qARg

′qB
and g′qBRf

′qA which is part of our assumption of f and g. �

4.3. Relations and generalized pullbacks. We can easily dualize the notions
of co-relation R, R-coproduct and R-pushout. Since we will make frequent use of
these dual notions, we state them explicitely to fix terminology. For a category C
and an object C ∈ C, the slice category C/C is the category of all morphisms with
domain C.

Definition 4.20. A relation R on a category C consists of the datum of a relation
RC on Ob(C/C) for every object C ∈ C, such that the following properties are
satisfied:

(1) If f : C −→ A and g : C −→ B are RC-related and if h : A −→ D is an
arbitrary morphism, then hf and g are RC-related.

(2) If f : C −→ A and g : C −→ B are RC-related and if h : B −→ C is an
arbitrary morphism, then fh and gh are RB-related.

The relation on C for which every two morphisms with the same codomain are
related is called the standard relation.

Definition 4.21. Let C be a category with a relation R on C.
(1) A morphism f : A −→ B in C is R-central if (f, 1A) is in R and R-op-central

if (1A, f) is in R.
(2) An object A ∈ C is R-commutative if (1A, 1A) ∈ R.
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The R-central morphisms in C constitute a right ideal in C. The R-commutative
objects in C form a full subcategory Com(C) ⊆ C. The relation R on C gives rise
to an obvious restricted relation on any subcategory. In particular, the restricted
relation on Com(C) is the standard relation on Com(C).

Definition 4.22. Let A and B be elements of a category C with relation R. The R-
product of A and B is an object P together with R-related morphisms pA : P −→ A
and pB : P −→ B such that for every two R-related morphisms qA : Q −→ A and
qB : Q −→ B, there is a unique morphism f : Q −→ B such that qA = pAf and
qB = pBf .

We denote the R-product of A and B by A×R B.

Definition 4.23. Let f : A −→ C and g : B −→ C be morphisms in a category C
with relation R. The R-pullback of f and g is an object P together with R-related
morphisms pA : P −→ A and pB : P −→ B such that fpA = gpB and such that for
every two R-related morphisms qA : D −→ A and qB : D −→ B with fqA = gqB
we have that there is a unique morphism h such that qA = pAh and qB = pBh.

We denote the R-pullback of f and g as above by A ×RC B. We call pB the
R-pullback of f along g, and by an R-pullback of f we mean an R-pullback pB of
f along some morphism g.

Just like R-pushouts, in general R-pullbacks do not behave well with respect to
compositions and isomorphisms.

The following observation will be useful later on:

Lemma 4.24. Consider a monomorphism m : Y −→ Z and an R-central mor-
phism g : X −→ Y . The following is the R-pullback of m along mg:

X
mg

// Z

X

1X

OO

g
// Y

m

OO

The following terminology may be somewhat confusing, but we prefer to use
the words “generated” and “cogenerated” in analogy with the classical meaning
of an object C being generated by morphisms landing in C resp. cogenerated by
morphisms starting in C.

Definition 4.25. Let R be a relation on a category C.
(1) Let T be a cover system on C. We say that R is T -generated if the following

condition holds for morphisms f : C −→ A and g : C −→ B in C and a
collection of morphisms (fi : Ci −→ C)i in T (C): if for all i we have
ffiRgfi, then we have fRg.

(2) Let S be an co-cover system on C. We say that R is T -cogenerated if the
following condition holds for morphisms f : C −→ A and g : C −→ B in C
and a collection of morphisms (gi : A −→ Ai)i in T (A): if for all i we have
gifRg, then we have fRg.
If R is a bi-relation, then R is called bi-S-cogenerated if both R and Rop

are S-cogenerated.

The following result generalizes well-known stability properties for categorical
pullbacks:
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Proposition 4.26. Consider the commutative diagram

X
f

// Z

P

m′

OO

g
// Y

m

OO

and suppose it is either the R-pullback of f and m, or the R-pullback of m and f ,
or the two-sided R-pullback of f and m.

(1) If m is a monomorphism, then so is m′.
(2) Suppose (E,M) is a factorization system on C and R is E-generated. If

m ∈M, then m′ ∈M.

Proof. Consider the following commutative diagram

X ′
v //

h

''

h′

  

X
f

// Z

P ′

e

OO

u
// P

m′

OO

g
// Y

m

OO

in which the right square is the R-pullback of f and m, m ∈ M and e ∈ E. Since
e ⊥ m there is a unique morphism h : X ′ −→ Y with mh = fv and he = gu.
In order to apply the R-pullback property, we need vRh. We have he = gu and
ve = m′u, from m′Rg we deduce m′uRgu in other words veRhe. Since R is E-
generated, we have vRh so we get a unique map h′ : X ′ −→ P with m′h′ = v and
gh′ = h. Now m′h′e = ve = m′u is equivalent to h′e = u since M ⊆ Mono. This
finishes the proof of the first statement. The proofs of the other statements are
similar. �

5. Tensor functional topology

The basic idea of functional topology is that a certain amount of “topology” can
be developed in a category based upon axiomatically defined classes of morphisms.
After this idea originated in the seventies in work of Herrlich, Manes and Penon
[10], [18], [21] [20], since the nineties the subject received a lot of attention in work
of Herrlich, Salicrup, Strecker, Clementino, Giuli, Tholen, Hofmann and others
with applications to Birkhoff closure spaces, uniform spaces, topological groups,
locales, approach spaces, lax algebras and schemes [12], [4], [22] [5], [6], [13], [16].
In this section, we adapt some of these approaches to a monoidal context, or, more
generally, to the context of a category endowed with a relation R in the sense of
Definition 4.20. We mainly focuss our attention on the following two approaches:

• a minimal approach inspired by [13], taking an R-proper class of so-called
proper morphisms as primary (§5.1). This allows for the definition of com-
pact objects (§5.4), of commutative Hausdorff objects (§5.4) and of sepa-
rated morphisms with commutative domain (§5.2). Many familiar relations
between these notions hold true, sometimes under suitable centrality con-
ditions. This approach can be refined by adding a second class F0 of closed
immersions to the data (§5.3).
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• an approach building on [5], [16], in the presence of a factorization sys-
tem (E,M). This involves the definition of a closed class F of closed mor-
phisms based upon an auxiliary R-proper class F0 of closed immersions and
an auxiliary closed class P of surjections, together constituting a co-called
(E,M)-closed structure (P,F0). If F is moreover an R-proper class, we call
(P,F0) an (E,M)-proper structure with proper morphisms F (§5.5).

If R is such that R-pullback diagrams can naturally be composed, and R-
pullbacks of identity morphims remain identity morphisms, then the results from
[16] integrally go through. In this section however, we concentrate on the results
which still hold true more generally. Unlike in the classical case, there is no stan-
dard way of associating an R-proper class to a closed class, so the most natural
thing to do in this setup is start at once with the class of morphisms one would
like to view as “proper”, and show by hand that it is an R-proper class. Even
in the second approach, there is no general way of checking whether the closed
class F we obtain from (E,M) and (P,F0) is actually R-proper (that is we have an
(E,M)-proper structure). On the other hand, if we start from a closed class F and
we have a factorization system (E,M) with M ⊆ F, then under the additional con-
ditions that R is E-generated and F is stable under cancellation of post-composed
M-morphisms, there is a canonical way of associating the closed structure (E∩F,M)
to it (see Propositions 5.18 and 5.19), which is at the other extreme from the case
P = E corresponding to the setup in [5].

From now on, we will always work in a category C with a fixed relation
R.

5.1. Proper morphisms. Let C be a category with R-pullbacks. We make use of
the standard classes Mor of all morphisms, Iso of isomorphisms, Mono of monomor-
phisms and Epi of epimorphisms.

In general, one is interested in classes F of morphisms satisfying some of the
following stability properties:

(1) Iso ⊆ F;
(2) F is closed under composition;
(3) F is R-pullback stable, that is every R-pullback of f ∈ F along an arbitrary

morphism is again in F.

If F satisfies (1) and (2), we call F a closed class. If F satisfies (1), (2) and (3), it
is called an R-proper class.

Definition 5.1. Let F be a class of morphisms. We say that a morphism g is
F-proper if every R-pullback of g exists and is in F.

We thus obtain the class F− Prop of F-proper morphisms.

Lemma 5.2. Let F be a class of morphisms.

(1) If F ⊆ G then F− Prop ⊆ G− Prop.
(2) If F0 ⊆ F with F0 R-pullback-stable, then each morphism in F0 is F-proper.

Unlike in the familiar situation for the standard relation, in general F − Prop
fails to be a proper class. We have:

Lemma 5.3. Suppose R is symmetric and Mono-cogenerated. Let F be a class of
morphisms. Consider morphisms f : X −→ Y and g : Y −→ Z. If f, g ∈ F− Prop
and f is central, then gf ∈ F− Prop (and gf is central).

Due to the failure of F−Prop to be proper in general, it is more natural to start
at once from a proper class F considered as “proper morphisms”, as is done in [13].
Obviously, a proper class F satisfies F = F− Prop.
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5.2. Separated morphisms. Let C be a category with R-pullbacks. For a mor-
phism g : X −→ Y , we consider the following R-pullback diagram:

X
g

// Y

X ×RY X

OO

// X

g

OO

If X is R-commutative, we obtain a unique diagonal morphism

∆g = (1X , 1X) : X −→ X ×RY X
from the universal property of an R-pullback.

We can now introduce separated morphisms:

Definition 5.4. Let F be a class of morphisms. Let g : X −→ Y be a morphism
such that X is a commutative object.

(1) We say that g is F-separated if the diagonal ∆g ∈ F.
(2) We say that g is F-perfect if it is F-proper and F-separated.

We thus obtain the corresponding classes F−Sep of F-separated morphisms and
F−Perf of F-perfect morphisms. A class F is called separating if every F-separated
morphism g satisfies ∆g ∈ F− Prop. Obviously, every proper class is separating.

Lemma 5.5. Let F be a class of morphisms.

(1) If F ⊆ G then F− Sep ⊆ G− Sep.
(2) Suppose Iso ⊆ F. Every monomorphism m : X −→ Y with X commutative

is F-separated.

Proof.
(2) For a monomorphism m : X −→ Y with X commutative, the diagram

X
m // Y

X

1X

OO

1X
// X

m

OO

is an R-pullback by Lemma 4.24, whence ∆m = 1X : X −→ X is in F.
�

The following generalizes [16, Lemma 2.6]:

Lemma 5.6. Suppose R is symmetric and Mono-cogenerated. Let F be a proper
class of morphisms. Consider morphisms f : X −→ Y and g : Y −→ Z. If f is
central, g ∈ F− Sep and gf ∈ F, then f ∈ F.

Proof. Since f and ∆g are central, the proof from [16, Lemma 2.6] goes through. �

5.3. Closed and proper pairs.

Definition 5.7. Consider a proper class of monomorphisms F0 ⊆ Mono and a
closed class F with F0 ⊆ F. The pair (F0,F) is called a closed pair, the morphisms
in F are called closed morphisms and the morphisms in F0 are called closed immer-
sions. Is F is moreover a proper class, then (F0,F) is called a proper pair and the
morphisms in F are called proper morphisms.
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A closed pair is called separating if for every F-separated morphism g : X −→ Y ,
we have ∆g ∈ F0.

Proposition 5.8. Assume that C is a category with R-pullbacks. If H is a proper
class, then (H ∩Mono,H) is a separating proper pair.

Proof. By Proposition 4.26 (1), Mono is a proper class and H ∩Mono is a proper
class of monomorphisms. The resulting proper pair is separating since the diagonal
of any morphism is a monomorphism. �

5.4. Compact and Hausdorff objects. Suppose C has a final object 1. The
unique morphism from an object X to 1 is denoted by !X : X −→ 1.

We will define compact and separated objects at once with respect to a proper
class, thus avoiding some of the problems that arise if one starts from a closed class.

Definition 5.9. Let H be a proper class, morphisms of which are called proper
morphisms.

(1) An object X ∈ C is H-compact if the morphism !X : X −→ 1 is proper.
(2) A commutative object X ∈ C is H-Hausdorff if !X : X −→ 1 is H-separated.

Proposition 5.10. Suppose F is a closed class for which H = F−Prop is a proper
class.

(1) An object X ∈ C is H-compact if and only if for every Y ∈ C if we have
that the second projection p2 : X ×R Y −→ Y is in F.

(2) If F is separating, then a commutative object X ∈ C is H-Hausdorff if and
only if !X : X −→ 1 is F-separated.

In the category Top with F the usual closed maps and H = F− Prop the usual
proper maps, the H-compact and H-Hausdorff objects are the usual compact and
Hausdorff spaces.

We now give some stability properties of compact objects.

Proposition 5.11. Let H be a proper class.

(1) If f : X −→ Y is proper and Y is H-compact, then X is H-compact too.
(2) If X and Y are H-compact, then so is X ×R Y .

Proof. (1) is clear. (2) For X and Y are compact, consider p1 : X ×R Y −→ X and
p2 : X ×R Y −→ Y . Since !X : X −→ 1 is in H, so is its pullback p2. Now also
!Y : Y −→ 1 is in H, hence so is the composition !X×RY =!Y p2 : X×R Y −→ 1. �

The following corollary expresses the well-known topological statement that a
closed subspace of a compact space is again compact:

Proposition 5.12. Suppose (F0,F) is a closed pair for which H = F − Prop is a
proper class. If f : X −→ Y is in F0 and Y is H-compact, then X is H-compact
too.

Finally, we can recover some of the famous topological statement that a contin-
uous morphism from a compact to a Hausdorff space is proper.

Proposition 5.13. Let H be a proper class. Consider a central morphism f :
X −→ Y with Y commutative. If X is H-compact and Y is H-Hausdorff, then f is
proper.

Proof. This follows from Lemma 5.6 by taking g =!Y . �
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5.5. (E,M)-closed structures. Let C be a category with R-pullbacks endowed
with a factorization system (E,M) with M ⊆ Mono. From now on, we denote the
(E,M)-factorization of a morphism f : X −→ Y by

X
ε(f)
// f(X)

µ(f)
// Y.

Definition 5.14. An (E,M)-closed structure (P,F0) (or simply closed structure if
(E,M) is understood) consists of:

(a) An R-proper class F0 ⊆M of closed immersions.
(b) A closed class P of surjections.

With respect to a closed structure, a morphism f : X −→ Y is called closed if and
only if for every m : X ′ −→ X in F0, we have ε(fm) ∈ P and µ(fm) ∈ F0. The
class of closed morphisms is denoted by F. The closed structure is called separating
if the following condition is satisfied.

(c) For any morphism f : A −→ B with A commutative, it holds that if the
diagonal ∆f of f is in F, then it is in F0.

The closed structure is called a proper structure if the class F is R-proper, and in
this case the closed morphisms are also called proper morphisms.

The following is an adaptation of [16, Proposition 3.13]:

Proposition 5.15. Let (P,F0) be an (E,M)-closed structure. We have:

(1) F is closed under compositions, thus (F0,F) is a closed pair.
(2) F0 = F ∩M.
(3) If we have mg ∈ F for a monomorphism m and an R-central morphism g,

then also g ∈ F.

If (P,F0) is a separating (E,M)-closed structure, then (F,F0) is a separating closed
pair.

Remarks 5.16. (1) Suppose we take P = E. Then a morphism f : X −→ Y is
closed if and only if for m : X ′ −→ X in F0 we have µ(fm) ∈ F0. Thus,
this is precisely the situation of [5].

(2) Suppose we take F0 = M. Then a morphisms f : X −→ Y is closed if and
only if for m : X ′ −→ X in F0 we have ε(fm) ∈ P.

The following is an adaptation of [16, Proposition 3.15]:

Proposition 5.17. Let (E,F0) be an (E,M)-closed structure. Suppose in an R-
pullback

X
f

// Y

P

m′

OO

f ′
// M

m

OO

of m ∈ F0 and f ∈ E, we have f ′ ∈ E. If gf ∈ F and f ∈ E, then g ∈ F.

Proof. Take f : X −→ Y and g : Y −→ Z morphisms. Let gf ∈ F with f ∈ E. Let
m : M −→ Y be an arbitrary morphism in F0. We need to show that µ(gm) ∈ F0.
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For this, we take the R-pullback of m and f . We have the following diagram:

X
f

// Y
g

// Z

P

m′

OO

f ′
// M

m

OO

ε(gm)
// g(M)

µ(gm)

OO

Since F0 is stable under R-pullbacks, we get that m′ ∈ F0. Since f ∈ E, the
assumptions of the proposition ensure that f ′ ∈ E. Thus µ(gfm′) = µ(gm). But
since gf is closed, this is an element of F0. �

In some situations we have M = F0. The following two propositions deal with
this case:

Proposition 5.18. Let (P,M) be an (E,M)-closed structure and let F be the class
of closed morphisms with respect to this closed structure.

(1) If we have mg ∈ F for m ∈M, then also g ∈ F.
(2) F is closed under R-pullback along morphisms in M.

Proof. (1) Consider m : Y −→ Z in M and f : X −→ Y with mg ∈ F. Consider
m′ : X ′ −→ X in M. We have µ(mgm′) = mµ(gm′) and ε(mgm′) = ε(gm′). Since
mg ∈ F, the latter is in P.

(2) Consider the pullback square

X
f

// Y

P

m′

OO

f ′
// Y ′

m

OO

with f ∈ F, m ∈M. Then mf ′ = fm′ ∈ F, whence by (1), f ′ ∈ F. �

Conversely, we have:

Proposition 5.19. Let (E,M) be a factorization system and suppose R is E-
generated. Let F be a closed class with M ⊆ F and assume that mg ∈ F for m ∈M
implies g ∈ F. Then (E∩F,M) is an (E,M)-closed pair, and F is its class of closed
morphisms.

Proof. Obviously E∩F is a a closed class, and by Proposition 4.26, M is R-proper.
It remains to show that F is the associated class of closed morphisms. Assume that
f ∈ F and m ∈ M, then it obviously holds that µ(fm) ∈ M and ε(fm) ∈ E. But
since µ(fm)ε(fm) = fm ∈ F, it follows by the hypothesis that ε(fm) ∈ F.
Conversely, assume that f : A −→ B is closed with respect to the (E,M)-closed
structure (E∩F,M). Since 1A ∈M, it follows that f = f1A = ε(f1A) ∈ F. We also
have µ(f1A) ∈M ⊆ F. Thus it follows that f ∈ F by composition. �

6. Tensor functional topology in Woronowicz categories

In this section, we show that the opposite Woronowicz categories of both associa-
tive algebras (§6.2) and C∗-algebras (§6.3) can naturally be endowed with proper
structures. In each case, this entails three main steps:
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(1) The definition of an R-proper class F of proper morphisms;
(2) The definition of a factorization system (E,M);
(3) The verification that the conditions of Proposition 5.19 are fulfilled and

thus (E ∩ F,M) is an (E,M)-closed structure.

In each case, compact objects correspond precisely to unital algebras, and all com-
mutative algebras are Hausdorff.

In the C∗-algebra case, restricting the opposite Woronowicz category to the com-
mutative objects yields a category equivalent to locally compact Hausdorff spaces
with continuous maps. We show that the restriction of (E,M) to this category coin-
cides precisely with the factorization system of dense maps and closed embeddings.
Further, the class F restricts precisely to the proper continuous maps.

6.1. Topological situations. In the category Top of topological spaces and con-
tinuous maps, let F be the class of the usual closed maps. The standard factorization
system (E0,M0) has E0 given by the surjections and M0 given by the embeddings.
It is well known that taking F0 to be the closed embeddings and putting P0 = E
yields a separating closed structure describing the closed maps F [5].

In [16], we alternatively consider the factorization system (E,M) with E given
by the dense maps and M given by the closed immersions. Put F0 = M. Clearly,
we are in the situation of Proposition 5.19 and P = E ∩ F corresponds to the usual
class of surjections. We thus obtain a separating closed structure (P,M) describing
the closed maps F.

Let CHd ⊆ Top be the full subcategory of compact Hausdorff spaces. The
factorization systems (E0,M0) and (E,M) both restrict to CHd and coincide on
this category, corresponding to the fact that every morphism is closed.

Let LcHd ⊆ Top be the full subcategory of locally compact Hausdorff spaces.
In this case only the factorization system (E,M) restricts to LcHd, and taking
F0 = M and P the surjections again yields a separating closed structure describing
the closed maps in LcHd.

6.2. Associative Algebras. Let k be a commutative ring. In this section we
develop functional topology on the opposite Woronowicz category Wor(k-Alg)op

from §3. For a morphism f : A −→ B in Wor(k-Alg)op, we write F : B −→M(A)
for the associated Woronowicz-morphism. We make the following definitions for
f : A −→ B:

• f is in F if F (B) ⊆ A;
• f is in M if F (B) = A;
• f is in E if F is injective.

Lemma 6.1. F is an R-proper class.

Proof. It suffices to check that F is stable under R-pullbacks. Consider F : B −→
M(A) and G : B −→M(C) arbitrary such that F (B) ⊆ A. Let us introduce some
notation:

• We let q : A⊗ C −→ A⊗̃C be the canonical quotient map.

• We let Î be the ideal of A⊗̃C generated by F (b)a ⊗ c − a ⊗ G(b)c and
aF (b)⊗ c− a⊗ cG(b), for arbitrary elements a ∈ A, b ∈ B and c ∈ C. We

let p : A⊗̃C −→ (A⊗̃C)/Î be the quotient map.

• We let F ′ : C −→ M(C) −→ M(A⊗̃C/Î) be defined as F ′(c) = (λ′, ρ′),
where λ′(p(q(a′⊗ c′))) = p(q(a′⊗ cc′)) and ρ′(p(q(a′⊗ c′))) = p(q(a′⊗ c′c)).

• We let G′ : A −→ M(C) −→ M(A⊗̃C/Î) be defined G′(a) = (λ′, ρ′),
where λ′(p(q(a′⊗c′))) = p(q(aa′⊗c′)) and ρ′(p(q(a′⊗c′))) = p(q(a′a⊗c′)).
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The following is then the R-pullback diagram:

B
F //

G

��

M(A)

G′

��

M(C)
F ′

//M((A⊗̃C)/Î)

We need to prove that F ′(c) is in (C ⊗ A)/J . But since G is nondegenerate, we
have that G(B)C = C. Hence we can write c =

∑
nG(bn)cn. Thus

F ′(c) =
∑
n

F ′(G(bn)cn).

Note that F (bn) ∈ A by hypothesis on F . Thus by definition of F ′, we have

F ′(G(bn)cn) = (λ′, ρ′)

where

λ′(p(q(b′ ⊗ c′))) = p(q(b′ ⊗G(bn)cnc
′))

= p(q(F (bn)b′ ⊗ cnc′))
= λF (bn)⊗cn(p(q(b′ ⊗ c′))).

Hence λ′ = λF (bn)⊗cn , and similarly ρ′ = ρF (bn)⊗cn . This is thus in (B⊗̃C)/Î. �

Lemma 6.2. The classes (E,M) form a factorization system.

Proof.
(1) E and M are closed under composition with isomorphisms.

This is obvious.
(2) Every morphism f decomposes as f = me, with m ∈M and e ∈ E.

In Wor(k-Alg), for every morphism f : A −→ M(B), we can decompose

it as A
e−→ A/Ker(f)

m−→ M(B). This induces a suitable factorization on
the dual category.

(3) Every e ∈ E is orthogonal to every m ∈M.
Consider a commutative diagram in Wor(k-Alg):

M(A) M(C)
uoo

d

||

M(B)

e

OO

M(D)

m

OO

v
oo

Since e(D) = C, we find for each x ∈ C that there exists an y ∈ D
such that m(y) = x. Then we define d(x) = v(y). This is a well-defined
morphism since e is injective. It is obvious that d is nondegenerate since v
is nondegenerate. �

Proposition 6.3. (E∩F,M) is a separating (E,M)-proper structure on Wor(k-Alg)op

with F as proper maps. With respect to the proper class F:

(1) An object A is compact if and only if it is a unital k-algebra.
(2) An object A is Hausdorff of and only if it is a commutative k-algebra.
(3) All morphisms with commutative domain are separated.
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Proof. By Lemma 6.2, (E,M) is a factorization system and by Lemma 6.1, F is a
proper class. We verify that we can apply Proposition 5.19. For this, we must first
verify that R is E-generated. For this we take nondegenerate morphism F : A →
M(C) and G : B →M(C), and we take a nondegenerate injection F ′ : C →M(D).
Assume that F ′FRF ′G for each i, this means that for each a ∈ A and b ∈ B, we

have F
′
(F (a)) commutes with F

′
(G(b)). Since F ′ is an injection, this implies

directly that F (a) commutes with G(b) and thus that FRG.
Next, we must verify the other condition of Proposition 5.19 that mg ∈ F and
m ∈ M implies that g ∈ F. Dually, this comes down to taking nondegenerate
morphisms M : A → M(B) and G : B → M(C) such that GM(A) ⊆ C and
M(A) = B. To verify that G(B) ⊆ C, take some b ∈ B. Then there is some
a ∈ A such that M(a) = b. Then G(b) = G(b) = G(M(a)) ∈ C. This verifies the
conditions of Proposition 5.19.

(1) The initial object of the category Wor(k-Alg)op is k. A Woronowicz-
morphism from k to A is then a nondegenerate morphism F : k −→M(A).
Demanding that this morphism is proper is exactly asking that F (k) ⊆ A.
This is true if and only if A contains a unit.

(2) Let A be a commutative object, that is a commutative k-algebra. The
diagonal morphism is represented by D : A⊗̃A −→M(A) such that D(a⊗
b) = ab. Since the algebra is nondegenerate, we obtain that D(A⊗A) = A.

(3) Let A be a commutative object, that is a commutative k-algebra and let
G : B →M(A) be the dual of a morphism in Wor(k-Alg)op. The diagonal
is given by D : A⊗̃BA→M(A) such that D(a⊗b) = ab ∈ A. This diagonal
thus obviously satisfies the condition D(A⊗̃BA) ⊆ A. And thus the dual
of the diagonal lies in F. �

6.3. C∗-algebras. In this section we develop functional topology on the opposite
Woronowicz category Wor(C∗-Alg)op from §3, and we discuss the relation with
the situation in LcHd. For a morphism f : A −→ B in Wor(C∗-Alg)op, we write
F : B −→M(A) for the associated Woronowicz-morphism. We make the following
definitions for f : A −→ B:

• f is in F if F (B) ⊆ A;
• f is in M = F0 if F (B) = A;
• f is in E if F is an isometry.

The following is proven along the lines of Proposition 6.3 (see also [19]):

Proposition 6.4. (E∩F,M) is a separating (E,M)-proper structure on Wor(C∗-Alg)op

with F as proper maps. With respect to the proper class F:

(1) An object A is compact if and only if it is a unital C∗-algebra.
(2) An object A is Hausdorff of and only if it is a commutative C∗-algebra.
(3) All morphisms with commutative domain are separated.

To end this section, we investigate the natural fully faithful functor

Φ : LcHd −→Wor(C∗-Alg)op : X 7−→ C0(X)

which sends a continuous map f : X −→ Y to the Woronowicz-morphism

Φ(f) = F : C0(Y ) −→ Cb(X) : g −→ g ◦ f.

The image of this functor is equivalent to the category Com(Wor(C∗-Alg)op) of R-
commutative objects. Recall from §6.1 that LcHd is endowed with the factorization
system of dense maps and closed embeddings, and taking the closed immersions
equal to the closed embeddings yields a closed structure describing the usual closed
maps.
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Theorem 6.5. [9] Let f : X −→ Y be a continuous map between locally compact
Hausdorff spaces with associated Woronowicz-morphism F = Φ(f).

(1) f is proper if and only if F ∈ F, that is F (C0(Y )) ⊆ C0(X).
(2) f is a closed embedding if and only if F ∈M, that is F (C0(Y )) ⊆ C0(X).
(3) f is dense if and only if F ∈ E.

Proof. (1) Assume that f is proper and let g ∈ C0(Y ). For each ε > 0, there exists
a compact set K ⊆ Y such that ‖g|Y \K‖∞ < ε. Since f is proper, we have that

K ′ = f−1(K) is a compact set such that ‖(g ◦ f)|X\K′‖∞ < ε. Thus g ◦ f vanishes
at infinity.
For the converse implication, assume for each g ∈ C0(Y ) that g ◦ f ∈ C0(X). Let K
be a compact subset of Y . By local compactness of Y , we know that there exists
some compact set K ′ such that K lies in the interior of K ′. Furthermore, K is
the intersection of such sets. Now let g be a continuous function such that g is
supported in K ′ and such that gK′(K) = 1. Since g is compactly supported and
thus lies in C0(Y ), we see that g ◦ f lies in C0(X). Thus there exists a compact set
S ⊆ X such that |g ◦ f | ≥ 1/2 only on S. If x ∈ f−1(K), then gK′(f(x)) ∈ K and
thus gK′(f(x)) = 1. Thus x ∈ S. Hence we see that f−1(K) ⊆ S. Thus f−1(K) is
a closed subset of a compact set and is thus closed.

(2) Assume that f is a closed embedding, then f is certainly proper and thus fol-
lows that F (C0(Y )) ⊆ C0(X). To prove the other inclusion, assume that g ∈ C0(X).
Then by the Tietze extension theorem (applied on the Alexandroff compactification
of X), we see that g extends to a function g′ ∈ C0(Y ). For this function, we clearly
have F (g′) = g.
For the converse implication, we already know by the previous point that f is
proper. It suffices to show that f is injective. So let x 6= y in X such that
f(x) = f(y) in Y . We can exhibit a function g ∈ C0(X) such that g(x) 6= g(y).
There exists a function g′ ∈ C0(Y ) such that g′ ◦f = g. But then g(x) = g′(f(x)) =
g′(f(y)) = g(y), a contradiction.

(3) Assume that f is dense. It suffices to prove that F is injective. Thus take
g, g′ ∈ C0(Y ) such that g ◦ f = g′ ◦ f . By density of f , it follows that g = g′.
Conversely, assume that F is an isometry. Assume that X is not dense. By local
compactness, there then exists a compact subset K of Y with nonempty interior.
Let g be a nonzero function supported in K. Then F (g) = 0; while by injectivity
of F follow that g = 0, a contradiction. �

Remark 6.6. From (2) and (3) of the above theorem, it formally follows that F ∈ F
implies that f is closed (see for instance [16, Proposition 3.48]). In (1), a much
more precise result is obtained, namely that F captures precisely the usual proper
maps between locally compact Hausdorff spaces when restricted to the commutative
objects.

One could remark that our system of functional topology for C∗-algebras has M
the closed embeddings and not general embeddings. We now describe more general
classes which would also encompass usual embeddings. Sadly, we do not yet know
whether these classes give rise to a factorization system.

For a morphism f : A→ B in the category Wor(C∗-Alg)op, we write F : B →
M(A) for the associated Woronowicz-morphism. We make the following definitions
for f : A→ B:

• f is in E′ if f ∈ E and if for each pure state τ : B → C there exists a pure
state τ ′ :M(A)→ C such that τ ′ ◦ F = τ .

• We define the following equivalence relation: we say for x, y ∈ B that
x ∼f y if for each pure state τ : B → C for which there does not exist a
pure state τ ′ :M(A)→ C with τ ′ ◦ F = τ , we have that τ(x) = τ(y).
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• We define f ∈ O if for each a ∈ A, there exists some b ∈ B such that
F (b) = a and such that b ∼f 0.
• Finally, we define f ∈M′ if its (E,M) factorization f = me satisfies e ∈ O.

This does yield the appropriate notions in the commutative case. So let f : X →
Y be a continuous map between locally compact Hausdorff spaces, then we get the
following Woronowicz-morphism F : C0(Y ) → Cb(X) : g → g ◦ f . In this case, we
get

Theorem 6.7. Under these conditions, we have:

(1) f is surjective if and only if f is in E′;
(2) f is a open embedding if and only if f is in O;
(3) f is an embedding if and only if f is in M′.

Proof. (1) This follows since by Gelfand duality we have that any pure state τ :
C0(Y )→ C has the form evy, the evaluation in y.

(2) By Gelfand duality the pure state τ ′ : C0(X)→ C corresponds to evaluations
evx with x ∈ X. Thus τ ′ ◦ F corresponds to the evaluation evf(x). Thus the pure
states τ : C0(Y ) → C which are not of the form τ ′ ◦ F correspond to evaluations
evy with y /∈ f(X). Hence, we see that for g, g′ ∈ C0(Y ), we have that g ∼f g′ if
and only if g(y) = g′(y) for each y /∈ f(X). Thus g ∼f 0 if and only if g vanishes
outside f(X).
Now let f be an open embedding and let g ∈ C0(X). We can extend g by 0 on
entire Y . Assume that this is not continuous, then there exists some y ∈ ∂X and
some open subset U around y such that |g| ≥ 1/2 on U ∩X. But since g vanishes
at infinity in X, we see that U ∩ X must be contained in a compact subset K of
X. This is also a compact subset of Y , and thus y ∈ K. Thus means that some
boundary point of U lies in K ⊆ X, this is a contradiction since X was assumed
open.
Conversely, let y be a boundary point of f(X) and assume that y ∈ f(X). Then
there exists some g ∈ C0(X) such that g(y) = 1. By hypothesis, g there exists
some g′ ∈ C0(Y ) such that g′ = g ◦ f and such that g′ vanishes outside f(X). This
is in contradiction with demanding that g(y) = 1 for the boundary point y. We
finally prove that f is injective. To show this, assume that x 6= y in X such that
f(x) = f(y). Take g ∈ C0(X) such that g(x) 6= g(y). There exists a g′ ∈ C0(Y )
such that g = g′f and then g(x) = g′(f(x)) = g′(f(y)) = g(y), a contradiction.
Thus f must have been injective.

(3) This follows since any locally compact subspace of a locally compact space
is an open subspace of a closed subspace. �
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Sér. A-B 275 (1972), A757–A760. MR 0308232 (46 #7346)
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